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1. P&rt&uction 

The symmetric group occupies a central position in the theory of finite as weli as 
unitary groups. As a consequence of the indistinguishability of identical elementary 
particles in quantum mechanics, the symmetric group has to he applied in order to 
specify the various states of any many-body system. This is an essential step in all 
procedures for the study of the spectrum and dynamics oE the corresponding Hamil- 
tonian. 

The representation theory of the symmetric group has been inveszigated  very 
thoroughly and extensively since the turn OF ite cerzury, or even earlier. The classical 
results are fully described in [l-41. It may therefore appear surprising that interesting 
open problems still exist, and even more surpnsing that simple and useful new results 
can still be obtained using elementary ideas. The poiui of view followed in the present 
paper was veq  eSectively advocated by Chen IS], who emphasized the role of the set 
of elements spanning the centre of :he group algebra. These elements, known as the 
class sum, form a complete set of mutually commuting operators, whos.. common 
eigenfunctions belong to wel!-defined il-iedircihle representations (irreps). The come- 
sponding eigenvatues, denoted A;, are related to the characters & by means of 

where jr/ and !C/ stand for the degeneracy of the irrep r and the number of elements 
in the class C, respectively. The prescnr author has recently been able to make 
considerable progress towards a combinatorial theory of the structure constants in the 
group algebra of the symmetric group [6-8] .  

In this paper a theorem concerning the form of the cxpiessions for the eigenvalues 
of the single-cycle class sums of the symmetric group is derived and used to bbtain 
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the following results. (1) the Centre of the $.-algebra is generated by means of 
polynomials in the set of elements consisting of the generators of the centre of the 
Sn-,+ algebra augmentcd by the single-c]rcle clars sums [(Z)]., [(3)1,, . . . , [(kfl)] .;  
(2) the irreps of S. with up  to k rows are fully specified by the class sums [(2)J., 
[(3)]., . . . , [(k)].. It is found that the k class sums [(2)1., [(3)ln,. . . , [(k+l)], suffice 
to specify the meps of S, for all n S nmax(k), where n,,,(k) >> k The relevance of these 
results to the constiuction of multi-c1ustt.r wavefunctions and to the treatment of spin 
Hamiltonians with arhtrary elementary spins is briefly pointed out in the appropriate 
sections below. 

2. Pdhhk+Q' rWM& 

IF. this section we iiSroduce some basic notions and formulate three lemmas whch 
are used in the following sections. 

Given a set of k variables {xi, x,, . . . , XJ we define a set of k power sinis 

i&= z: xl i = 1,2, .. . . k (1) 
I = ,  

These power sums determine the IC elementav symmelric functions [Z] 

(ij c e, = L x,,~, . . . x,, r =  i ,i ,  . . . , k 
<I, 

which are the coefficients in the polynomial 

whex eo= 1. Fzoa :he F-nd-rnextn! tkecrern of n!gebhm the foF!o?r.ing app!ies. 

Lemma 1.  The set of k power sums { p ,  . pip . . . , p k }  determines the set of variables 
{x,, x,, . . . ,xJ up to permutations among them. 

A Young shape consisting of n boxes is usuaily specified in terms of the lengths of its 
TOWS. which form apartition of P I  <h,+ht+ ...+ h x = n .  where A \ , > h 2 3  ... Bhli>O).  
Denoting each box by a row index i (running from top to bottom) and a column index 
j (running from left to right) we follow Robinson and Thrall [l, 91 and refer to the 
difference -9 as the content of the box (i ,  j ) .  A Young shape specifies a set of n 
contents. IT is shown in [I, 91 that any set of contents specifies ai mose one Young shape. 

Recalling that an irrep of the symmetric group is fully specified by a corresponding 
Ywmg shape we nhi2in the foliowing. 

Lemma 2. Any irrep of the symmetric group S, is specified by an appropriate set of 
n contents. 

Combining lemma I and :emma 2 we conclude the following. 

Lemma 3. Any i m p  of the symmetric group is specified by a set of n power sums 
over a set of n contents. 
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The power sums over the contents of a Young shape r will be denoted by 

3. On the eigenvalues of the sliass mms of the symmetric group 

Each class sum of the symmetric group [SI possesses a set of eigenvalues corresponding 
to the irreps of this~group. Expressions for the eigenvalues of the class sums [(2)],, 
[(3)]. and [(4)]. in terms of the lengths of the different rows of the Young shape 
specifying the irrep were given by Partensky [IO]. It follows from lemma 3~tbat the 
eigenvalues of any class sum can be expressed In ienns of the power sums over the 
contents of the corresponding Young shapes. Expressions of this form for the eigen- 
values for the classes of the transpositions and rhe 3-cycies 

( 5 )  

A[(3ljn = u 2 - i n ( n  -1) (6 )  
were given by Jucys [ll] and, independently, by Suzuki [12]. These expressions are 
equivalent to those due to Partensky [lo). A heuristic construction of the expressions 
for the eigenvalues of the single-cycle class sums with up to 14 indices was recently 
proposed by Pauncz and Katriel[13). Sf these, the eigenvalaes of the 4- and 5-cycles 
are 

r 
A ~ a j ,  = 

A & ) 1 , . = ~ ~ - ( 2 n - 3 b ,  (7) 
AfC5lj. = u4-(3n - 10)~- , -2u:+~a(n - 1) (5n  - 19). (8) 

These resufts suggest the following theorem. 

Theorem 1.  The eigenvalues of the class sums comaining a single cyde of length p, in 
an imp F, are polynomials in the p - 1 power suns  o-, , u2, . . . , up-, , with coefficients 
which are polynomial- in ' 11 

This theorem is proved hg considering the expression for the eigenvalue of the ciass 
sum [(l)"-'(pfl, in the inep F specified by the partition A,  + A Z + .  . .+Ak = n ( A ,  3 A 2 a  
. . .a Ak > O), which was presented by MacDonald [27, following Frobenius. This 
expression involves the n vanabies 

(9) 

t i I > f i L l > . .  > p n  (10) 

i = 1,2, . . . , n pt = A> - i + n  

which satisfy 

i.e., they are strictly decreasing. It can be written ln the form 

This is 2 ratiorral symmetric function in the n variables p,. p,*, . . ~ p,,. We shall now 
show that viewing a5 a rational funciion in any one variable, keeping a11 the 
others constant, ir has no poles. This implies that this rational function IS actually a 
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polynomial of degree p in each one of the variables. Being symmetric in the n variables 
II can be expressed in terms of the symmetric power sums 

r k =  P: R = l , 2  ,..., p .  (12 )  
I = ,  

These power sums can be wfitten in terms of the first p - 1 power sums in the contents 
of the corresponding Young shape. Therefore, the expression for the eigenvalues of 
the class sum [ ( P ) ] ~ ,  presented in equation ( l l ) ,  can be expressed in terms of the latter. 

we clioose pr as the variable to be examined. 
Denoting it by x we obtain 

To show the absense ofpoles in 

A(x)=-+(x-l). 1 . , (x-pf l )  fi ( 1 - - )  P 
P I = ?  x-w,  

Tne only values o f x  fur which h ( x )  could have poles are p2, p,, . . . , pa. To investigate 
the behaviour of A<x) in the neighbourhood ofwi we separate the regular part and write 

P 
wk -x  

(,+U 

where 

Using I'Hiospital's rule we obtain 

which is finite (by equation (IO)). This completes the proof of theorem 1. 

To explicate the relation between the symmetric power sunis ?i; defined in equation 
(12) and the power sums over the contents ofehe Youns shape we note that the contents 
Inthe i thmware- i+I , - i - t2  ,..., O,?,Z , . .  ,I,-r.Thecontnbutionofthisrowto 
nk is 
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Since the first sum can be written as a polynomial cf degree k +  1 in ( A ,  - i), it follcws 
that uk can be expressed linezrly in terms of T ~ , .  . . , rkn. (Note that T,  =&(n + l) .)  

By a simple inductive argnment we obtain from theorem 1 the fdlowing. 

Lemma4. Theeigenvalnesof[(2)].,[(3)].,. . . ,[(k+l)ln (k<n)deteninethepower 
sums u , ( n ) ,  u A n )  ,..., udn). 

We note in passing that the set of power sums u , ( n ) ,  d n ) .  . . . , u n - , ( n )  determines 
the power sums u , { n )  WP& ;s fi. 

4. Geraerati~n of the centre of the sg?nmetric ~ K O M ~  algebra 

The centre of the symmetric group algebra (CS.).is linearly generated by the class 
sums of its varions classes. Several results have been obtained by various authors 
concerning a smaller set of generators. Farahat and Higman [le: classified the various 
classes according to the number of cycles 2nd showed that ths set of sums of the foim 

generates the centre. 
In many applications ii is useful to start from the centre of a subalgebra and 

augment it so as to gene:ate the centre of ?he algebra. Thus, Cheu [ 5 ]  showed that the 
centre of CS. can be generated by the set of transposition c k s  sums ofthe subgroup 
chain S s ~ S m - l = . . . ~ S 2 : i . e .  

{[(2)ln; k = 2 , 3 , .  . . , n). (20) 

This result is equivalent to tire statement that any member of the centre of CS, can 
be expressed as a polynomial over the sei of commuting operators consisting of the 
generators of the centre of CS._, augmented by the transposition class sum of CS,, 

Kacriel and Novoselsky j161 have recently shown that the centre of CS, can be 
generated in a similar sense by augmenting the centre of CS,_2 with the class sums 
E(2)], and 1(3)].. The derivation of that result, using Pariensky's elipreasions For the 
eigenvalues of these class sums [IO;, drew the present author's attention io the role 
of the contents of the Young shapes, or rather the symmetric polynomials in these, in 
the representation theory of the symmetric group. 

1(2)1,,. 

In this section we prove the foilowing rheorem. 

Theorem 2. Any member of ?he centre of CS, car, be expressed as a polynomial over 
thz set of commuting operators consisting of the generztors of the centrs of CS,-, 
augmented by the clvs sums [(Z)],, EP)]., . . . ~ [(k+ I)]" of CS.. 
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To prove this theore& we consider a common eigenfunction Q of all the elements 
of the centre of CS,,-* as well as of [ (Z)] . ,  [(3)] ",..., [ ( k + I ) l n .  We show that 
belongs to a weil-defined irrep of S .  vihich is fully specified by the set of eigenvalues 
corresponding to the generators of CS,_, and the k additional CS. dass sums 
mentioned above. Since this is valid for any function Q with the properties specified 
above it follows that the generators of CS, can in fact be expressed in terms of the 
set consisting of the generators of CS,_, and the first k sir,gle-cycle class sums of 
CS,.The deductionfromtheproperties ofthe imps to thoseof:heopera?orsthemselves 
is a special case of the commonly used principle that a property which holds for a 
complete set of eigenstates is a property of the operator itself. 

Tbe function Q specified above is a common eigenfnnction of the elements of the 
centre of CS.-* from which fact it follows that it belongs to an irrep rE-, of S.-i. 
This irrep is Pdly specified by the eigenvalues of any set of generating class sums. 

By lemma 4, the eigenvalues of [ ( Z ) ] n - k ,  [(3)],,_*, . . . , [ ( k  t l)ln-* determine the 
power sums o l ( n  - k ) ,  u2(n-  k) ,  . , , u k ( n - k ) .  I f  k + l >  n - k (i.e. k > [ + ( n - l ) ] )  the 
set of eigenvalues of [ (2t] ,_ , ,  . . . , [(n -k)].-& determines 5 .1 (n -  k ) ,  0 2 ( n  - 
k) ,  . . . , om-*-,(n - k )  and these power sums themselves determine the higher pow:; 
sums un-*(n - k ) ,  . . . , o,(n - k) .  Snnilarly, the eigenval-es of [(Z)],, [(3)]., . . . , 
[ ( k + l ) j n  determine the power sums 5 , ( n ) ,  u2(n), . . . , uk(n). Note that 

where {a,, as,. . . , mk} is a set of contents. By lemma 1, equations (21) determine the 
set of content8 {a,, a>, . . . , ak} uniquely, so that along with the set of n - k contents 
corresponding to rn-* we obtain an additional set of k contents which, together, 
determine a unique r,. Since this result holds for any function specified as above, 
the theorem follows. - .  

INS theorem is usehi in the reduction 

which is relevant to the problem of constructing symmetry-adapted multi-cluster 
wavefunctions 1161. 

9. 5 ~ e ~ ~ ~ ~ ~ ~ ~ ~  of ~ S K E ~ S  wibb a S S X & ~ C ~ @ ~  number of rows 

It Is  well known that irreps of the symmetric group associated with Young shapes 
consisting of not more than two rows are fully specified by the eigenvalue of the class 
of transpositions. This property is the origin of the fact that the eigenvalue of the 

~ ,+-... --:- ~-__^.^_*-.....-*--- -'.:.I-...:--, ---:A"- ... i.6 ~,..̂ ,...*"-,"..i". 
" C a U l l n l l l  >p,n upc;rilro, ,"I sysrGa,a VI IY6111,UmI @",L,"'ra W'Ul CLC*.E*'.LY'J "p.a." *.iY"' 

10 is suEcient to specify the mep of the symmetric group to which the state of lnteiest 
belongs. 

A generaiization of this result, which applies to systems of identical particles with 
higher elementary spins, is formulated in the following theorem. 

27zeore-m 3. If the Young shape of an irrcp is known to have at most k rows, the irrep 
is fully specified by tlie eigenvalues of the clasz sums [WL, [(3)3,, . . . [(k)l.. 
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To prove the theorem we first note that by lemma 4 the eigenvalues of the class sums 

We consider a partition of n corresponding to an irrep of S .  with at most k rows, 

The power sums mrresponding to this irrep are 

[(2)1", [(3)1., . . . , L(k)l. specify the power sums U!(#), d i t ) ,  . . . , ~ d n ) .  

i.e. A , +  AZ+. . .fix = n where A,  > A 2 3 . .  .a Ak 

r =  1.2,. . . , k - 1  
i=,,=i 

Using the identities 

equations (23) can be written in the form 

(25) 
r+ ,  r Q:,&=6 r = 1 5 2 , .  . . k - 1  
m-0 

where 
I. 

p m =  2 (Ac-iJ'" (26) 
r - l  

and 
I i--1 

r=,,=u 
G,=nr-(-l)' 2 j'. 

Since po= k and p ,  = n -ik(k+ 1) we can obtain p2, p 3  up to pk successively, using 
equation (25). Having obtained these power sums we can obtain the k vanables A ,  -- 1, 
A2-2,. . . , hk - k  Noting that A I >  A 2 3 . .  .a Ak it follows that A, - 1 > h2-2>. . .> 
AL - k so that the order of the k variables determined using the power sum5 (26: is 
unique. 

The partition A , ,  h 2 . .  . . , ;L&  has thus been uniquely determined, which concludes 
the proof of iheorem 3. 

6. Same re.su!ts concerning &e minimal oomber ~l feneratoon for the centre OS the 
sg.mmehrie group n l g e h  

While the full construction of the characrsr table is required if the group-theoretical 
orthogonality theorem is to be used io reduc? a givein representation into its irreducible 
components, the resuits presented above imply that a rather small subset of class sums 
is actually needed. Using the spproach advoeatcd by Chen [Y, we recall that any 
subspace of functions which is ivvariaut under the group (i.e. carries a representation 
nfthc nrnmni hr rsrl..-pri +Ea -"_- I-.. o:.,...i+--~~..a 2: ---" -!&-*:n= 
-2 l.." -.v..y, W Y ' .  VI ..YYICY _I" L S l L  ~ " , , I L ' , Y I I I I I  ' L ' " p I  "3 D l l l l U L L C I l L r V U I  u ' ~ i j v i r a L ' r u r l u L r  

of any set of generators of the centre of the group elzebra. In fact, any set of operators 
whose eigenvalties label the irreps uniquely suffices. In view of this 1-t observation it 
is remarkable that the number of single-cycle classes which are sufficient to provide a 
complek labeiling of the irrepr af S., for any given n, is acttially much smaller than 
n - 1, the number implied by the resulrs presented above. By calculatmg the eigenvalues 
af the single-cycle class sums one finds the results presented in table 1 for a,,&), 
the maximum vahe of n for which the set of k class sums [(2J]., [(3)1,, . . . , I (k+ 111. 
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Table 1. Thenumber ofclassrums needed to rpectfy thelrreprofvznoussymmetncgroups 

Number of Order of the maximal Number or irreps 
class sums used symmetric gmup m the marmal group 

5' 
14' 
23 1 

411 

7 
135 

1255 
14583 

is sufficient to label all the irreps uniquely. Afso included in table 1 is the number of 
irreps (and classes) in the group S, with n = nmax(k), 

The rapid increase in the number of irreps involved accounts for the fact that going 
beyond k = 4 becomes computationally prohibitive and probably of little practical use. 
However, the fact that a complete characterization of the irreps of groups as high as 
S,, is possible with a mere four class sums IS remarkable, in view of the fact that even 
state-of-the-art computer codes for the construction of the character tables of symmetric 
groups [17] are limited at rt s 20. In fact, an attempt to determine the maximal symmetnc 
group whose imps  are specified by the first five single-cycle claas sums was aborted 
after it was established that for S72 each one of the 5392 783 irreps is uniquely labelled 
in terms of the 6ve corresponding eigenvalues. 
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